
Quantum mechanics of higher derivative systems and total derivative terms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 5049

(http://iopscience.iop.org/0305-4470/29/16/025)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 03:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 5049–5058. Printed in the UK

Quantum mechanics of higher derivative systems and total
derivative terms

Yasuhito Kaminaga†
Department of Physics, Toho University, Miyama 2-2-1, Funabashi 274, Japan
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Abstract. A general theory is presented of the classical and quantum mechanics of singular,
non-autonomous, higher derivative systems. It is shown that adding a total derivative to a
Lagrangian does not materially affect either, (a) the canonical analysis of the system, or (b) its
quantum mechanics.

1. Introduction

Higher derivative theories occur in various aspects of modern physics—gravity, strings,
particle phenomenology, and so on. It is of importance to clarify general properties of such
theories.

The main purpose of this paper is to prove a very simple, but important, theorem for the
quantum mechanics of higher derivative theories.Total derivative terms in a Lagrangian
never affect the quantum mechanics. The theorem is proven within the most general, i.e.
singular and non-autonomous (explicitly time-dependent), situation. Needless to say, the
classical version of the theorem is well known and is trivial. And the classical result often
plays an important role in various theories. Surprisingly enough, the quantum version,
despite its importance, has not been proven, up to now, except special cases. It is in fact
non-trivial and requires a proof. On the way to the final goal, we will show that total
derivative terms do not change the constraint structures in a essential respect.

The paper is laid out as follows: in section 2, the canonical theory, now known as the
Ostrogradski formalism [1], is reviewed and the canonical quantization according to Dirac
is performed. Section 3 is devoted to the canonical analysis of the system and the proof of
the theorem.

2. General theory of higher derivative systems

2.1. The Ostrogradski formalism

Let us consider a Lagrangian which depends on the coordinatesqi ’s and their time
derivatives up to theN th order,

L(q(0), q(1), . . . , q(N), t) (2.1)

† E-mail address: kaminaga@toho-u.ac.jp
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whereq(I )’s are abbreviations forq(I)i := dI qi/dt I , I = 0, 1, . . . , N . The Euler–Lagrange
equations for (2.1) are given by

N∑
I=0

(
− d

dt

)I
∂L

∂q(I)i
= 0. (2.2)

We introduce canonical variables,

qIi := q(I)i (2.3a)

pIi :=
N∑

K=I+1

(
− d

dt

)K−I−1
∂L

∂q(K)i
(2.3b)

to parametrize the 2N dimensional (for eachi) phase space of (2.2). Throughout the present
paper, we take the convention thatI , J , andK run from 0 toN−1, unless otherwise stated.
We have relations as follows

∂L

∂q(0)i
= dp0i

dt
(2.4a)

pN−1,i = ∂L

∂q(N)i
(2.4b)

pAi = ∂L

∂q(A+1)i
− d

dt
pA+1,i (2.4c)

with A = 0, 1, . . . , N − 2. Equation (2.4a) is the Euler–Lagrange equation (2.2).
When det(∂2L/∂q(N)i∂q(N)j ) = 0 the Lagrangian (2.1) is singular, which means there

exist primary constraints

φm(q,p, t) ≈ 0 (2.5)

whereq and p are abbreviations forqIi ’s andpIi ’s. The number of primary constraints
is larger thanor equal to the nullity of the Hessian matrix‖∂2L/∂q(N)i∂q(N)j‖; the larger
case may occur whenN > 2.

The canonical Hamiltonian is defined by

H(q,p, t) :=
N−2∑
A=0

pAiq
A+1,i + pN−1,i q̇

N−1,i − L(q, q̇N−1, t) (2.6)

which is conserved if the system is autonomous

dH

dt
+ ∂L

∂t
= 0. (2.7)

The quantitiesq̇N−1,i ’s appearing in the right-hand side of (2.6) indicate that they should
be replaced bypN−1,i in the final expression. We avoid the use of such a symbol asqN,i

for q̇N−1,i . This is becauseqN,i looks as if it is an independent variable, and hence it may
cause confusion in the following discussion.

Once we reach here, higher derivative theories do not differ much from usual theories
with first-order derivatives. The well known Dirac procedure [1, 2] for singular Lagrangians
is applied to higher derivative systems without any modification.

All the constraints (the primary and the secondary ones) are classified into first class,
γa ≈ 0, and second class,χα ≈ 0. The Poisson bracket is defined by

{F,G} := ∂F

∂qIi

∂G

∂pIi
− ∂F

∂pIi

∂G

∂qIi
(2.8)



Higher derivative systems 5051

with which the equations of motion for an arbitrary quantityF(q,p, t) is

Ḟ ≈ {F,HT} + ∂F

∂t
. (2.9)

The total HamiltonianHT is defined as

HT := H + uα1χα1 + λa1γa1 (2.10)

whereH is the canonical Hamiltonian (2.6),uα1’s are functions ofq,p, and t determined
by consistency, andλa1’s are the arbitrary Lagrange multipliers. The indicesα1 and a1

run only on the primary constraints. The second-class constraintsχα ≈ 0 become strong
equationsχα = 0 in terms of the Dirac bracket

{F,G}∗ := {F,G} − {F, χα}C−1αβ{χβ,G} (2.11)

with Cαβ := {χα, χβ}.

2.2. Quantum mechanics

The quantization is formally performed by replacing the Dirac bracket{ , }∗ by the quantum
commutator(ih̄)−1[ , ]. Unfortunately, it is incredibly difficult to find out the operator
representation of the Dirac bracket. In order to proceed further, it is desirable to circumvent
the Dirac bracket. Here let us remember a general result [2] that second-class constraints can
always be turned into first-class constraints, if necessary, by adding extra variables. Without
losing generality, therefore, we assume there are no second-class constraints. Then we have
only to consider the Poisson bracket. Quantization is performed by replacing the Poisson
bracket by the commutator, and the first-class constraints by the subsidiary conditions on
the wave function.

Let us take the Schrödinger picture with coordinate representation. The commutator
algebra is represented bŷqIi = qIi , and p̂I i = −ih̄∂/∂qIi . One obtains the Schrödinger
equation

ih̄
∂ψ(q, t)

∂t
= Ĥ

(
q,−ih̄

∂

∂q
, t

)
ψ(q, t) (2.12)

and the subsidiary conditions

γ̂a

(
q,−ih̄

∂

∂q
, t

)
ψ(q, t) = 0 (2.13)

in which q and∂/∂q are abbreviations forqIi ’s and∂/∂qIi ’s.
This section is concluded by emphasizing a peculiarity of the quantum mechanics

of higher derivative systems. The quantitiesqi ’s, q̇i ’s, . . . , and q(N−1)i ’s are indeed all
treated as coordinates, so there are no uncertainty relations between them, but there will
be uncertainty relations betweenqi ’s andq(2N−1)i ’s, betweenq̇i ’s andq(2N−2)i ’s, . . . , and
betweenq(N−1)i ’s andq(N)i ’s.

3. The reduction theorem

3.1. Problem setting

Consider an(N − 1)th order LagrangianL] that may be singular. We define anN th order
LagrangianL as follows

L(q(0), q(1), . . . , q(N), t) := L](q(0), q(1), . . . , q(N−1), t)+ d

dt
W(q(0), q(1), . . . , q(N−1), t)

(3.1)
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whereW is an arbitrary function ofq(I)i ’s and t . Needless to say,L andL] are classically
equivalent because the total derivative term is turned, in the action integral, into a surface
term, which does not affect the classical equations of motion. Nevertheless, their quantum
equivalence is non-trivial. Note thatL andL] are different-order Lagrangians. As is stated
in section 2, different-order Lagrangians lead to different conjugate pairs, which means
different uncertainty relations. The canonical variables (2.3) for the Lagrangian (3.1) are
given as

qIi = q(I)i (3.2a)

pN−1,i = ∂W

∂q(N−1)i
(3.2b)

pAi = p
]

Ai +
∂W

∂q(A)i
. (3.2c)

We take the convention thatI , J , K run from 0 toN−1, andA, B, C run from 0 toN−2,
unless otherwise stated. Herep]Ai ’s are the canonical momentum in theL]-theory,

p
]

N−2,i := ∂L]

∂q(N−1)i
(3.3a)

p
]

Ai := ∂L]

∂q(A+1)i
− d

dt
p
]

A+1,i (3.3b)

with A = 0, 1, . . . , N − 3. The canonical Hamiltonian (2.6) becomes

H(q,p, t) = pAiq
A+1,i + pN−1,i q̇

N−1,i − L(q, q̇N−1, t)

= H](q,p], t)− ∂W(q, t)

∂t
(3.4)

with

H](q,p], t) := p
]

Aiq
A+1,i − L](q, t). (3.5)

We should distinguishH](q,p], t) defined here from the canonical Hamiltonian in theL]

theory

H](q],p
], t) :=

N−3∑
A=0

p
]

Aiq
A+1,i + p

]

N−2,i q̇
N−2,i − L](q], q̇

N−2, t) (3.6)

whereq] is an abbreviation forqAi ’s, while q without ] is the abbreviation forqIi ’s. Note
that there is a relation asq = (q], q

N−1,i ).
These twoH]’s, (3.5) and (3.6), are the same in their value but different as functions

of canonical variables (see appendix). This implies the following: while the equation (3.4)
with (3.5) defines a Hamiltonian system equivalent to the original Lagrangian system (3.1),
the use of (3.6) instead of (3.5) results in another Hamiltonian systemnot equivalent to the
original Lagrangian system. In other words, equation (3.6) has forgotten the relations

q̇N−2,i = qN−1,i . (3.7)

Equation (3.5), on the other hand, remembers them as canonical equations,q̇N−2,i =
∂H(q,p, t)/∂pN−2,i . Thus (3.6) defines a larger theory, in which the original one is
contained as a special case. If we impose, by hand, the relation (3.7) on the larger theory,
then it reduces to the original one.

Since the larger theory is quite useful for our purposes, we use, in the following, (3.6)
instead of (3.5). As will be stated in section 3.3, the larger theory is a kind of gauge theory
and we can impose (3.7) as a gauge-fixing condition to it.



Higher derivative systems 5053

3.2. Constraint analysis

Equation (3.2b) does not involveq(K)i ’s for K > N . This implies that they are primary
constraints

γi(q,p, t) := pN−1,i − ∂W

∂qN−1,i
≈ 0. (3.8)

WhenL] is singular, i.e. det(∂2L]/∂q(N−1)iq(N−1)j ) = 0, there are other primary constraints
in addition toγi ’s

γ ]a (q],p
], t) ≈ 0 (3.9)

which stems from (3.2c) together with (3.3). It is not a hard task to show

{γi, γj } = −
{
pN−1,i ,

∂W

∂qN−1,j

}
−

{
∂W

∂qN−1,i
, pN−1,j

}
= ∂2W

∂qN−1,i∂qN−1,j
− ∂2W

∂qN−1,j ∂qN−1,i

= 0 (3.10a)

{γi, γ ]a } = {pN−1,i , γ
]
a } −

{
∂W

∂qN−1,i
, γ ]a

}
= {pN−1,i , q

N−1,k} ∂γ
]
a

∂p
]

Aj

∂p
]

Aj

∂qN−1,k
−

{
∂W

∂qN−1,i
, pBk

}
∂γ

]
a

∂p
]

Aj

∂p
]

Aj

∂pBk

= ∂γ
]
a

∂p
]

Aj

∂2W

∂qN−1,i∂qAj
− ∂2W

∂qA,j ∂qN−1,i

∂γ
]
a

∂p
]

Aj

= 0. (3.10b)

The total Hamiltonian is given by

HT = H + λaγ ]a + λiγi (3.11)

whereλa ’s and λi ’s are the Lagrange multipliers. Straightforward calculation shows that
γi ’s do not produce secondary constraints

γ̇i ≈ {γi,HT } + ∂γi

∂t

≈
{
γi,H

] − ∂W

∂t

}
+ ∂γi

∂t

= ∂H]

∂p
]

Aj

∂2W

∂qN−1,i∂qAj
+ ∂2W

∂qN−1,i∂t
− ∂2W

∂qAj∂qN−1,i

∂H]

∂p
]

Aj

− ∂2W

∂t ∂qN−1,i

= 0. (3.12)

This conclusion would not be obtained if we adopted (3.5) in (3.4). As forγ
]
a ’s, one obtains

γ̇ ]a ≈ {γ ]a ,HT } + ∂γ
]
a

∂t

≈ {γ ]a ,H]} + ∂γ
]
a

∂p
]

Ai

∂2W

∂qAi∂t
+ λb{γ ]a , γ ]b } − ∂γ

]
a

∂p
]

Ai

∂2W

∂t ∂qAi
+

(
∂γ

]
a

∂t

)
]

≈ {γ ]a ,H]

T } +
(
∂γ

]
a

∂t

)
]

(3.13)
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where

H
]

T := H] + λaγ ]a (3.14)

is the total Hamiltonian in theL]-theory. The symbol(∂/∂t)] represents partial derivative
by t with q] andp] fixed. One can prove

{qAi, p]Bj } = δABδ
i
j (3.15a)

{qAi, qBj } = {p]Ai, p]Bj } = 0 (3.15b)

which means

{F],G]} = {F],G]}] (3.16)

whereF] andG] are arbitrary functions ofq], p], andt . The symbol{ , }] is the Poisson
bracket in theL]-theory. Using (3.16), one can rewrite (3.13) as

γ̇ ]a ≈ {γ ]a ,H]

T }] +
(
∂γ

]
a

∂t

)
]

. (3.17)

Note that the only property we assumed in deriving (3.10b) and (3.17) is thatγ ]a ’s are
functions ofq], p], andt . Thus these equations remain valid even if secondary constraints
are substituted forγ ]a ’s. Therefore we have proven thatall the secondary constraints
emerging fromγ ]a ’s are just the same as the ones derived in theL]-theory. Furthermore
one concludes, from (3.10b) and (3.12), thatγi ’s are first class.

In the above discussion,γ ]a ’s may be a mixture of the first-class and the second-class
constraints. As is stated in section 2.2, in the following we assume thatγ

]
a ’s and the

secondary constraints derived from them are all first class. Let us write them again as
γ
]
a ≈ 0. Then all the constraints in our Lagrangian (3.1) are exhausted by (3.8) and (3.9).

The final form of the total Hamiltonian is (3.11), in which the summation ona should be
taken only on the primary constraints. (The summation on all the first-class constraints
defines the extended Hamiltonian formalism [2]; our discussion in what follows remains
valid even if we take the extended formalism.)

3.3. Gauge transformations

In this subsection we investigate the gauge transformation generated byγi ’s. For an arbitrary
quantityF(q,p, t), the gauge transformation is defined as

δF := εi{F, γi} (3.18)

whereεi ’s are arbitrary functions oft , but are independent of the canonical variables. As
is well known, physical quantities must be gauge invariant.

One can show that quantities related to theL]-theory, for exampleqAi , p]Ai , andH], are
all gauge invariant. Whereas quantities proper to theL-theory are, in general, non-invariant.
For example, one obtains

δpIi = εj
∂2W

∂qIi∂qN−1,j
(3.19a)

δqN−1,i = εi (3.19b)

δW = εi
∂W

∂qN−1,i
(3.19c)

δHT = δH = −εi ∂2W

∂t ∂qN−1,i
(3.19d)



Higher derivative systems 5055

which show thatpIi ’s, qN−1,i ’s, W , HT, andH are all non-invariant and unphysical.
Needless to say, true physical quantities must be gauge invariant under the gauge

transformations generated byγ ]a ’s as well. Further investigation of them requires the
specification ofL]’s concrete form. So we do not pursue it any more.

Note, remember that our theory is equivalent to the original Lagrangian system (3.1)
when we impose (3.7) in addition. Since (3.7) is not gauge invariant, it works as a gauge-
fixing condition. The gauge transformations generated byγi ’s are the symmetry of the
larger theory but not the symmetry of the original Lagrangian (3.1). Nevertheless they are
important; gauge invariance of our theory makes it clear that the condition (3.7) is in fact
unessential and does not affect the physics.

3.4. Proof of the theorem

We now turn our attention to the quantum mechanics. The Schrödinger equation is given
by (2.12) with the Hamiltonian operator

Ĥ

(
q,−ih̄

∂

∂q
, t

)
= Ĥ ]

(
q],−ih̄

∂

∂q]
− ∂W

∂q]
, t

)
− ∂W

∂t
(3.20)

derived from (3.4) with (3.6) and (3.2c). The subsidiary conditions (2.13) are given by

γ̂iψ(q, t) =
(

−ih̄
∂

∂qN−1,i
− ∂W

∂qN−1,i

)
ψ(q, t) = 0 (3.21)

γ̂ ]a

(
q],−ih̄

∂

∂q]
− ∂W

∂q]
, t

)
ψ(q, t) = 0. (3.22)

Equations (3.21) are solved as follows

ψ(q, t) = ψ](q], t)exp
iW(q, t)

h̄
(3.23)

whereψ] is an arbitrary function ofqAi ’s and t . The equation (3.23) gives the general
form of the physical state. Note thatψ](q], t) is gauge invariant, whileψ(q, t) is not.

It is not hard to verify the identities(
−ih̄

∂

∂qAi
− ∂W

∂qAi

)n
ψ =

[(
−ih̄

∂

∂qAi

)n
ψ]

]
exp

iW

h̄
(3.24)

on the physical state (3.23). Heren is a non-negative integer. These identities imply the
following identity

F̂

(
q],−ih̄

∂

∂q]
− ∂W

∂qAi
, t

)
ψ =

[
F̂

(
q],−ih̄

∂

∂q]
, t

)
ψ]

]
exp

iW

h̄
. (3.25)

Here F(q],p], t) is an arbitrary quantity which is a polynomial with respect top]Ai ’s.
Assuming thatH](q],p

], t) andγ ]a (q],p], t)’s are polynomials with respect top]Ai ’s, we
apply (3.25) for them.

Inserting (3.23) into the Schrödinger equation (2.12) with (3.20), and using (3.25), we
finally obtain

ih̄
∂ψ](q], t)

∂t
= Ĥ ]

(
q],−ih̄

∂

∂q]
, t

)
ψ](q], t). (3.26)

This is nothing but the Schrödinger equation in theL]-theory. As for the condition (3.22),
it simply becomes

γ̂ ]a

(
q],−ih̄

∂

∂q]
, t

)
ψ](q], t) = 0. (3.27)
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Equation (3.26) together with (3.27) constitutes the full quantum mechanics for theL]-
theory. Hereψ](q], t) is identified as the wave function of theL]-theory. Therefore we
have proven the following proposition.

Proposition. nth order and(n− 1)th order Lagrangians, which may be singular and non-
autonomous, lead to the same quantum mechanics if their difference is a total time derivative.

The proposition implies the following theorem.

Theorem. nth order andmth order Lagrangians, which may be singular and non-
autonomous, lead to the same quantum mechanics if their difference is a total time derivative.

Proof. Let us assumen > m, and put

Ln = L]m + d

dt
Wn−1. (3.28)

Here, the subscript ofL, L], andW denote the order of highest derivatives contained. We
use the same notation forL andW, which appear in what follows, as well.

(i) n = m case. Let us introduce an arbitrary functionWn, and define a new Lagrangian
Ln+1 as follows

Ln+1 := Ln + d

dt
Wn. (3.29)

Then (3.28) is rewritten as

Ln+1 = L]n + d

dt
(Wn−1 + Wn). (3.30)

These equations together with the proposition say

Ln ∼ Ln+1 ∼ L]n (3.31)

where∼ means quantum mechanically equivalent.
(ii) n = m+ 1 case. This case is just the same as the proposition.
(iii) n > m + 2 case. Let us introducen − m − 1 arbitrary functionsWi , i = m,m +

1, . . . , n−2, and define the same number of new LagrangiansLi , i = m+1, m+2, . . . , n−1,
as follows

Lm+1 := L]m + d

dt
Wm

Lm+2 := Lm+1 + d

dt
(Wm+1 − Wm)

...

Ln−1 := Ln−2 + d

dt
(Wn−2 − Wn−3).

(3.32)

Consistency between these equations and (3.28) requires

Ln = Ln−1 + d

dt
(Wn−1 − Wn−2). (3.33)

Therefore we have proven

L]m ∼ Lm+1 ∼ Lm+2 ∼ · · · ∼ Ln−2 ∼ Ln−1 ∼ Ln. (3.34)

This completes the proof. �
The autonomous case withn = m = 1 of the theorem has been proven by Kugo [3].
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Corollary (Grosse-Knetter). An mth order Lagrangian, and the same Lagrangian formally
treated as if it were ann(> m)th order Lagrangian lead to the same quantum mechanics.

Proof. This is the special case of the theorem with the vanishing total derivative term.�
The corollary has been proven by Grosse-Knetter [4] for the special case of autonomous

Lagrangians. His proof is based on path integrals. Our corollary is the generalization of
his result to non-autonomous Lagrangians.
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Appendix: A pedagogical example

In this appendix we want to clarify the difference between twoH]’s, (3.5) and (3.6), using
a simple example. The example we consider is

L(q, q̇, q̈) = 1
2(q̇)

2 + q̈. (A1)

This, of course, meansL](q, q̇) = (q̇)2/2 andW(q, q̇) = q̇. For theL]-theory, we obtain
q0 := q andp]0 := ∂L]/∂q̇ as the canonical variables, and

H](q0, p
]

0) := p
]

0q̇
0 − L](q0, q̇0) = 1

2(p
]

0)
2 (A2)

as the canonical Hamiltonian (3.6).
Now consider theL-theory (A1). The canonical variables (2.3) areq0 := q, q1 := q̇,

and

p1 := ∂L

∂q̈
= 1 (A3a)

p0 := ∂L

∂q̇
− d

dt

(
∂L

∂q̈

)
= q̇. (A3b)

From (A3a) we obtain a primary constraint

γ (q0, q1, p0, p1) := p1 − 1 ≈ 0 (A4)

which corresponds to (3.8). The canonical Hamiltonian (3.4) becomes

H(q0, q1, p0, p1) : = p0q
1 + p1q̇

1 − L(q0, q1, q̇1)

= p0q
1 − 1

2(q
1)2

= H](q0, q1, p
]

0).

(A5)

Here

H](q0, q1, p
]

0) := p
]

0q
1 − 1

2(q
1)2 (A6)

is the concrete form of (3.5). In the above formulae, all the arguments have been written
down explicitly without using the abbreviations,q := (q0, q1), p := (p0, p1), q] := (q0),
andp] := (p

]

0).
Obviously (A6) and (A2) are different as a function of the canonical variables. For the

sake of simplicity, let us refer to (A5) with (A6) as the ‘true Hamiltonian’,

H TRUE(q0, q1, p0, p1) = p
]

0q
1 − 1

2(q
1)2. (A7)
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On the other hand, using (A2) instead of (A6), we obtain another Hamiltonian

HGAUGED(q0, q1, p0, p1) = 1
2(p

]

0)
2 (A8)

which we call the ‘gauged Hamiltonian’.
The true Hamiltonian (A7) is equivalent to the original Lagrangian (A8) in the sense

that the canonical equations for (A7) reproduce the Euler–Lagrange equation for (A1).
Unfortunately the true Hamiltonian is not suitable for our purposes. In fact we obtain

H TRUE
T := p0q

1 − 1
2(q

1)2 + λ(p1 − 1) (A9a)

γ̇ ≈ {γ,H TRUE
T } = q1 − p0 =: γ ′ ≈ 0 (A9b)

γ̇ ′ ≈ {γ ′, H TRUE
T } = λ ≈ 0 (A9c)

{γ, γ ′} = −1. (A9d)

Equation (A9d) shows that the primary constraintγ := p1 − 1 ≈ 0 and the secondary
constraintγ ′ := q1 − p0 ≈ 0 are second class. This reflects the fact that the original
Lagrangian (A1) has no gauge symmetry.

We now concentrate on the gauged Hamiltonian (A8). As is easily confirmed, the
canonical equation for the gauged Hamiltonian does not contain the information

q1 = q̇0 (A10)

which corresponds to (3.7). The relation (A10) is indispensable for the equivalence to the
original Lagrangian (A1). We can show that the gauged Hamiltonian, in fact, is equivalent
to the ‘gauged Lagrangian’

LGAUGED(q0, q1, q̇0, q̇1) := 1
2(q̇

0)2 + q̇1, (A11)

where q0 and q1 are independentvariables. If we put the relation (A10) by hand, the
gauged Lagrangian (A11) reduces to the original Lagrangian (A1). Thanks to the lack
of (A10), (A11) becomes a gauge theory. That is, as shown in the text, there occurs no
secondary constraint (3.12), and the only constraint (A5) is first class. The corresponding
gauge transformation (3.19a) is given as

δq1 = ε (A12a)

δq0 = δp
]

0 = δp
]

1 = 0 (A12b)

under which the gauged Lagrangian (A11) is invariant up to a total derivative. We can
impose the lost relation (A10) as a gauge-fixing condition for the gauged model (A11) or
(A8).
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